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Parametric excitation is of concern for cables such as on cable-stayed bridges, whereby

small amplitude end motion can lead to large, potentially damaging, cable vibrations.

Previous identification of the stability boundaries for the onset of such vibrations has

considered only a single mode of the cable, ignoring non-linear coupling between

are included, with support excitation close to any natural frequency. Cable inclination,

sag, parametric and direct excitation and nonlinearities, including modal coupling, are

included. The only significant limitation is that the sag is small. The method of scaling

and averaging is used to find the steady-state amplitude of the directly excited mode

and, in the presence of this response, to define stability boundaries of other modes

excited parametrically or through nonlinear modal coupling. It is found that the directly

excited response significantly modifies the stability boundaries compared to previous

simplified solutions. The analysis is validated by a series of experimental tests, which

also identified another nonlinear mechanism which caused significant cable vibrations

at twice the excitation frequency in certain conditions. This new mechanism is

explained through a refinement of the analysis.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Inclined cables are important structural elements on cable-stayed bridges and guyed masts. Large cable vibrations have
been observed on several major bridges and although aerodynamic effects are sometimes responsible, another source of
excitation of concern comes from motion of the deck and/or tower. The natural frequencies of local cable vibrations and
global structural vibrations are generally in the same frequency range, leading to potential dynamic interactions. These,
along with nonlinear effects, can produce complex behaviour involving large amplitude cable vibrations; see for example
the reviews by Nayfeh and Pai [1], Rega [2,3] and Ibrahim [4].

Of particular concern is parametric excitation, whereby small amplitude deck/tower motions with a component along
the cable axis can cause large amplitude cable motions at half the excitation frequency [5]. These vibrations can occur in-
plane (defined as the plane in which the cable sags statically) or out-of-plane, even if the anchorage motion is limited to in-
plane, which is generally the dominant direction of deck motion on cable-stayed bridges. This paper aims to identify the
conditions under which modal vibrations of a cable become unstable about the zero response, in which case large
vibrations in the mode could arise, potentially leading to damage. Parametric excitation is one mechanism by which such
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an instability can occur. For inclined cables subject to vertical deck motion and/or horizontal tower motion, the situation is
complicated by the existence of simultaneous direct (external) and parametric excitations.

Analysis of parametric excitation of cables has often been based on the Mathieu–Hill equation for a single mode [5–7]
neglecting nonlinear coupling between modes. On this basis Lilien and Pinto da Costa [5] provide the following expression
for the minimum axial support amplitude required to cause parametric excitation in the first mode:

Ucrit ¼ 2esL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where es is the static strain, L the cable length, O the excitation frequency and o1 and x1 the natural frequency and
damping ratio of the first mode, where O/2o1E1. An equivalent expression (for O/2o1E1) is given in the SETRA
guidelines [8], which are in common use for stay cable design. The expression can be applied to other cable modes by
substituting the relevant natural frequency and damping ratio.

Uhrig [7] included nonlinear coupling and parametric excitation terms in his derivation of the equations governing in-
plane vibrations of an inclined cable with horizontal input at the upper anchorage. However, he reduced them to
uncoupled linear Mathieu equations to consider the solution. Caetano [9] considered end motion axially and transversely
to the cable, but treated them as separate cases.

Perkins [10] addressed tangential support motion of a sagging cable, providing simultaneous principal parametric
excitation of the first out-of-plane mode and external excitation of the first (symmetric) in-plane mode (with twice the
natural frequency, due to the sag). The cable was modelled as a coupled two-degree-of-freedom (2DOF) system and
experiments exhibited similar behaviour to that predicted. Zhang and Tang [11] also considered a 2DOF cable model
subjected to tangential support motion, in this case with 1:1 internal resonance between the in-plane and out-of-plane
modes and excitation around twice the natural frequency. Hence, although there was external excitation of the in-plane
mode (if symmetric), it was far from the mode’s natural frequency.

A number of authors have considered an inclined cable subject to vertical support excitation of the lower anchorage,
including parametric excitation and nonlinear terms. Berlioz and Lamarque [12] used the multiple scales method to
estimate the response amplitudes of a 1DOF model of the first in-plane mode (detuned from other modes by the sag),
subject to excitation around its natural frequency (direct excitation) or at twice the natural frequency (parametric
excitation). After fitting parameters good agreement with experiments was found. Georgakis and Taylor [13,14] explored
the responses of a cable modelled with four shape functions, subjected to both sinusoidal and stochastic support
excitations, by extensive numerical simulations. Wang and Zhao [15] obtained numerical results of amplitudes of planar
and non-planar responses for certain cases, from the shooting method and the continuation technique. Pinto da Costa et al.
[16] discussed the relative importance of direct and parametric excitation of inclined cables, by analytically considering
horizontal and vertical cables and from numerical solutions of vibration amplitudes of four different inclined cables. Chai
and Chen [17] conducted numerical simulations of the in-plane response of the equivalent system of inclined guy cables to
horizontal sinusoidal motion of the upper anchorage. Nayfeh et al. [18] analysed a vertical cable (i.e. with no sag) with
inclined excitation. The method of multiple scales and numerical solution of the resulting modulation equations were used
to predict amplitudes of steady-state motion for certain parameter values, in good agreement with experiments. All of
these studies focussed on the amplitudes of the responses, inevitably resorting to some numerical technique using certain
parameter values.

Other studies have considered autoparametric resonance of an inclined cable interacting with a beam, including
nonlinearities, but only including a single in-plane mode of the cable (or cable-dominated mode of the combined system)
[19–21]. An alternative cable-deck model proposed by Georgakis et al. [14,22] and developed by Lorenzo [23] allows for
autoparametric resonance and nonlinearities and includes multiple cable modes, but has only been solved by numerical
simulation.

For a cable with small sag, the natural frequencies are close to commensurate [24]. Hence for primary parametric
excitation of any one mode (at twice its natural frequency), the excitation frequency is close to the natural frequency of
another mode. Therefore, inputs at an angle to the cable axis (e.g. vertical anchorage motion on an inclined cable) can cause
simultaneous direct excitation and parametric excitation of at least two modes, which are nonlinearly coupled [16]. Due to
the coupling, the response of the directly excited mode can modify the dynamic stability of other modes. The effect on the
stability boundaries had not been considered until recently [25], when a three-degree-of-freedom model, with 1:2:2
frequency ratios, was used for vertical excitation of the lower anchorage of an inclined cable excited around the natural
frequency of the second in-plane mode. Stability boundaries for the first and second out-of-plane modes were identified
analytically.

Here this analysis has been generalised to include all in-plane and out-of-plane modes, for excitation close to any
natural frequency. The cable inclination, sag, parametric and direct excitation and nonlinearities, including modal coupling,
are all included. The only significant limitation is that the sag is small.

For inputs of low amplitude or away from critical frequencies it is found that the cable essentially responds only in the
directly excited mode, although the amplitude is significantly affected by nonlinearities. The zero amplitude response
stability boundaries of other modes are derived analytically using the method of scaling and averaging. For input
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amplitudes above these boundaries parametric excitation and nonlinear coupling between modes initiate oscillations in
modes other than the directly excited mode, which could lead to damaging large amplitude responses.

The theoretical stability boundaries are validated though a series of experimental tests. These tests also unveiled
another nonlinear mechanism causing significant cable vibrations at twice the excitation frequency in certain conditions.
A refinement of the analysis is able to explain this effect, also caused by the simultaneous axial and transverse excitation of
the cable.
2. Derivation of theoretical stability boundaries

2.1. Equations of motion

There have been many representations of the equations of motion for cables [1]. In this paper the modal equations
derived by Warnitchai et al. [26] are adopted. These equations are valid for elastic inclined cables with small sag, they
include cubic and quadratic nonlinearities, and they allow for small support motions in all directions at both ends of the
cable. They are therefore very appropriate for the taut inclined cables considered here. The cable is supported at end points
a and b and the direction of the chord line from a to b is defined as x (Fig. 1). The static sag profile lies in the x–z plane, so
z represents in-plane motion and y represents out-of-plane motion. The angle of inclination of the chord relative to the
horizontal is defined as y. Axial vibrations of the cable are neglected since they occur at a much higher frequency than
transverse vibrations. The equation of motion of the nth out-of-plane cable mode is expressed as [26]

mynð €ynþ2xynoyn _ynþo2
ynynÞþ

P
knnkynðy2

kþz2
k Þþ

P
k2bnkynzk

þ2Znðub�uaÞynþznð €vaþð�1Þnþ1 €vbÞ ¼ Fyn,
(2)

and that of the nth in-plane cable mode as
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2
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where yn and zn are the generalised displacements of the cable in the nth out-of-plane and in-plane modes, respectively, for
any n (note that the summations over modes yk and zk, for all k, cause nonlinear coupling between modes); subscripts a and
b denote the top and bottom anchorage points, respectively, and the modal masses myn and mzn and the parameters nnk,
bnk, Zn, zn and an are given by
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where r is the density, A the cross sectional area, L the chord length, E the Young’s Modulus and ss the static stress.
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Fig. 1. Definition of cable coordinate system.
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Ernst’s equivalent modulus of the cable, Eq [27], Irvine’s non-dimensional sag parameter, l2 [24], and the component of
weight normal to the cable axis, g, are given by

Eq ¼
E

1þl2=12
, l2

¼
E

ss

gL

ss

� �2

, g¼ rg cosy,

where g is the gravitational acceleration.
The out-of-plane and in-plane natural frequencies, oyn and ozn, respectively, are given by

oyn ¼
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Fyn and Fzn are the generalised external loads on the cable in each mode and it is assumed that damping can be modelled
as viscous with modal damping ratios xzn and xyn. Details of the derivation are given by Warnitchai et al. [26].

Noting that for cables with small sag kn)1, the natural frequencies can alternatively be represented by

oyn ¼on ¼ no1, ozn �onð1þknÞ,

where

o1 ¼
p
L

ffiffiffiffiffi
ss

r

r
and kn ¼
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p4n4

 !
ð1þð�1Þnþ1

Þ
2: (4)

In Eqs. (2) and (3), the myn and mzn terms are linear, the nnk terms are cubic nonlinearities from stretching of the cable in
the deformed shape, the bnk terms are quadratic nonlinearities from the effect of the static sag, the Zn terms cause
parametric excitation from the axial end displacements and the zn and an terms cause direct excitation from the end
accelerations. The equations of motion of all modes are coupled through the nonlinear terms.

This paper focuses on the response to support motions, with no external forces applied along the length of the cable
(Fyn=Fzn=0). For conciseness the support motions are expressed as

u¼ ub�ua, vn ¼ vaþð�1Þnþ1vb, wn ¼waþð�1Þnþ1wb:

It is assumed here that the rest of the structure to which the cable is attached is not affected by the dynamics of the
cable. The cable is excited by prescribed sinusoidal support motions (which in general can be a combination of u, vn and wn

components) close to the pth natural frequency, with excitation frequency

O¼ po1ð1þmÞ, (5)

where m is a small frequency detuning parameter. Hence p is the mode number of the modes (one in each plane, yp and zp)
with natural frequencies close to the excitation frequency, whereas n is the mode number of any mode under
consideration.

2.2. Scaling and averaging

The method of scaling and averaging [28] is applied to the equations of motion to determine the steady-state
amplitudes of directly excited modes and the dynamic stability of other modes. Wagg and Neild [29] made a comparison
with the method of multiple scales to calculate the response of mode z2 in the absence of any other modal responses. The
results were found to be the same (to order e), but the analysis using the method of scaling and averaging was somewhat
simpler so it is adopted here to address the multiple mode case.

Time is transformed using the relationship t¼ ð1þmÞt and the small parameter e is introduced for book-keeping
purposes. Hence Eqs. (2) and (3) are scaled such that they are in standard Lagrange form [30,31]
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2
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where {}’ represents differentiation with respect to t and
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(8)

The form of Eqs. (6) reflects the fact that the response of each mode is dominated by its linear undamped response.
The O(e2) and higher order terms are neglected.
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The equations are now in a form that can be averaged [28,30,31]. A trial solution of Eqs. (6) is proposed with the form

yn ¼ ync cosðontÞþyns sinðontÞ: (9)

Substituting this into the left hand side of the equation it can be shown that a solution exists with

y0nc ¼�
e
on

sinðontÞXyn, y0ns ¼
e
on

cosðontÞXyn, (10)

and

y0n ¼�onync sinðontÞþonyns cosðontÞ, (11)

(and similarly for zn).
Eqs. (10) can be averaged by integrating with respect to t over the fundamental period t1=2p/o1 (i.e. in terms of real

time, p times the excitation period, t1=2pp/O). Since, also from Eqs. (10), the derivatives of ync and yns (and znc and zns) are
small, these amplitudes may be treated as constant over the integration period [30]. In the integration, only the
components of Xyn (or Xzn) at frequency on (with respect to t) give non-zero terms. The resulting averaged derivatives of
the amplitudes, represented with an additional subscript a, are
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where Y2
na ¼ y2

ncaþy2
nsa and Z2

na ¼ z2
ncaþz2

nsa are squares of the modal amplitudes, Cna ¼ yncazncaþynsaznsa are cross-coupling
terms, di,j is the Kronecker delta function and U, Vn and Wn are the amplitudes of the sinusoidal support motions u, vn and wn.

The averaged equations for the y and z components are identical except all occurrences of y and z are exchanged and in
the z equations m is replaced by (m�kn) and znVn by (znWn�anU). Both of these latter effects are due to the static sag of the
cable, although for even n, kn and an are both equal to zero so these differences do not exist.

2.3. Direct excitation

For all modal responses starting with zero amplitude, the only non-zero rates of amplitude increase are for y0psa and
z0psa. i.e. only modes yp and zp, with natural frequencies close to the excitation frequency, are directly excited.

For pure out-of-plane excitation (Wp=U=0), for a response only in mode yp (the stability of other modes is considered
below), the rates of amplitude increase are

y0pca ¼�
e
on

xypo2
pypcaþmo2

pypsa�
3npp

8m
ypsaY2

pa

� �
, (16)

y0psa ¼
e
on

�xypo2
pypsaþmo2

pypca�
3npp

8m
ypcaY2

paþ
zp

2m
o2

pVp

� �
: (17)

Setting these both to zero leads to the following equation that defines the steady-state amplitude in mode yp (Ypa)

9n2
ppY6

pa�48mo2
pmnppY4

paþ64m2o4
pðm

2þx2
ypÞY

2
pa ¼ 16o4

pz
2
pV2

p : (18)

Similarly, for in-plane excitation (Vp=0), the steady-state amplitude of mode zp (Zpa) (in the absence of any other modal
responses) is given by

9n2
ppZ6

pa�48mo2
pðm�kpÞnppZ4

paþ64m2o4
p ðm�kpÞ

2
þx2

zp

n o
Z2

pa ¼ 16o4
pðzpWp�apUÞ2: (19)

Hence Eqs. (18) and (19) are cubic equations in Y2
pa and Z2

pa, respectively, which for given cable and excitation parameters
can be solved to find the steady-state amplitude in the directly excited mode. If the first two terms on the left hand side are
neglected, Eq. (18) agrees with conventional linear analysis (for small m). For sufficiently small amplitudes this is valid, but
in general the first two nonlinear terms express the dynamic stiffening that causes the resonance curve to bend over
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towards higher frequencies. It is noteworthy that in Eq. (19) the effective input amplitude is reduced by apU. Hence, the
axial component of end motion, which is often neglected when considering direct excitation, can have a significant effect
on the response amplitude of odd in-plane modes.

2.4. Modal stability

Due to the parametric excitation and nonlinear coupling terms in the equations of motion, the zero amplitude response
solution of other modes can become dynamically unstable. The localised stability of mode n is considered, around the
semi-trivial solution having zero response in this mode along with the directly excited response in mode p, above. Loss of
stability of this solution indicates that a response in mode n will occur.

For all modes other than the directly excited mode(s), the first order differential equations, Eqs. (12) and (13), can be
expressed in matrix form (with no loss of generality) as

y0nca

y0nsa

( )
¼

c11 c12

c21 c22

" #
ynca

ynsa

( )
, (20)

(and similarly for in-plane modes from Eqs. (14) and (15)).
The eigenvalues, w, are then given by the solution of the characteristic equation

w2�ðc11þc22Þwþc11c22�c12c21 ¼ 0: (21)

On the local stability boundary the larger real part of the two eigenvalues is zero, hence

c11c22�c12c21 ¼ 0: (22)

For pure out-of-plane or in-plane excitation, only mode yp or zp, respectively, is directly excited. For the localised
stability of each other mode about zero response, it is sufficient to only retain the linear terms in that mode and it is
assumed that all other modes, apart from the directly excited one, have zero amplitude.

For direct excitation of mode zp (with Vp=0), the matrix in Eq. (20), for mode yn, with nap, then becomes

c11 c12

c21 c22

" #
¼

e
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�xyno2
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nnp
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2
64

3
75, (23)

hence, from Eq. (22), the local stability boundary is given by

x2
yno

4
nþ mo2

n�
nnp

4m
Z2

pa

	 
2

�d2n,p
Zn

2m

	 
2

U2 ¼ 0: (24)

For 2nap (and nap) there are no real solutions and mode yn (for all other n) is always stable about the zero response, for
any amplitude of mode zp. Similarly, for 2nap (and nap), mode zn is always stable. Equivalent conditions exist in the presence
of direct excitation of mode yp (with Wp=U=0), except modes yn and zn are also stable for 2n=p. Therefore, during direct
excitation of any one mode (yp or zp), all other modes are always stable about the zero solution, except for the mode in the other
plane at the same frequency (mode zp or yp, respectively) and, for in-plane excitation with an axial component of end motion,
the modes in both planes at half the excitation frequency (modes yq and zq, where q=p/2). Considering these exceptions, for
example, in-plane excitation close to 2o1 results in direct excitation of mode z2 and can, for certain ranges of excitation
frequency and amplitude, trigger motion in modes y2, y1 or z1. The trigger conditions for the modes at half the excitation
frequency and for the mode in the other plane at the excitation frequency are addressed in the next two sub-sections.

2.5. Parametric excitation

For 2n=p (i.e. for excitation frequency OE2oq, where q=n=p/2), from Eq. (24) the stability boundary of mode yq

becomes

n2
qpZ4

pa�8mmo2
qnqpZ2

paþ16m2o4
qðm

2þx2
yqÞ ¼ 4Z2

qU2: (25)

Hence for an axial component of cable end motion, U, larger than given by this expression, mode yq, at half the excitation
frequency, becomes unstable due to parametric excitation. There is an identical expression for the stability boundary for
parametric excitation of mode zq, except xyq is replaced by xzq and m by (m�kq).

In the absence of a direct response in mode zp (Zpa=0), the stability boundary in Eq. (25) equals (to first order e) the
boundaries given by Lilien and Pinto da Costa [5] and SETRA [8]. In the case of pure axial excitation (Vp=Wp=0), since for
integer q, p is even, so ap=0, from Eq. (19) the only real solution for the steady-state response of mode zp is Zpa=0. Hence in
this case, the stability boundaries from Lilien and Pinto da Costa and SETRA are valid. However, in the more general case
the axial excitation is accompanied by a transverse component of end motion (Wpa0), which gives a non-zero response of
mode zp, which modifies the stability boundary in accordance with Eq. (25). The effect of the response in mode zp is
effectively to increase the mean tension in the cable, thus shifting the parametric stability boundary of mode yq (and mode
zq) to higher frequencies.
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2.6. Nonlinear modal coupling between modes in orthogonal planes

For direct excitation of mode zp (with Vp=0), the matrix in Eq. (20), for mode yp (n=p) becomes

c11 c12

c21 c22

" #
¼

e
on

�xypo2
pþ

npp

4m
zpsazpca �mo2

pþ
npp

8m
ðZ2

paþ2z2
psaÞ

mo2
p�

npp

8m
ðZ2

paþ2z2
pcaÞ �xypo2

p�
npp

4m
zpsazpca

2
64

3
75, (26)

hence, from Eq. (22), the local stability boundary is given by

3n2
ppZ4

pa�32mmo2
pnppZ2

paþ64m2o4
pðm

2þx2
ypÞ ¼ 0: (27)

For given detuning, m, within a certain range, there are two positive solutions for Zpa. Mode yp is unstable between these
two solutions, hence the (planar) response in mode zp cannot be sustained alone and the total response involves motion
both in-plane and out-of-plane, although the excitation is only in-plane. This type of response is discussed by Nayfeh and
Mook [32] and was investigated numerically and experimentally by Nayfeh et al. [18].

Similarly, for direct excitation of mode yp (with Wp=U=0), there is an equivalent stability boundary for mode zp, with
xyp replaced by xzp, m by (m�kp) and Zpa by Ypa.

2.7. Non-dimensional response and stability boundaries

For direct excitation of any one mode, the steady-state response of that mode, up to the stability boundary of any other
mode, is given by Eq. (18) or (19). The stability boundary of the corresponding mode in the other plane is given by Eq. (27)
(or the equivalent for direct excitation of mode yp and stability of mode zp). For direct excitation of an even in-plane mode
with a component of axial end motion, the stability boundaries for parametric excitation of the modes with nominally half
the natural frequency are given by Eq. (25) for the out-of-plane mode and an equivalent equation for the in-plane mode.
Hence these few equations govern the generalised modal stability of the cable.

For general application and to relate full-scale behaviour and laboratory experiments, these equations are re-expressed
in non-dimensional form. The input and output displacements are non-dimensionalised with respect to L: Û ¼U=L,
Ŷpa ¼ Ypa=L, etc., and two non-dimensional cable parameters are defined: es=ss/E (i.e. static strain) and G=rgL/ss (i.e. ratio
of cable weight to tension). Irvine’s non-dimensional sag parameter can then be expressed as l2=G2 cos2 y/es.

Eq. (18), for the steady-state out-of-plane response in mode yp (for Wp=U=0), then becomes

9ðŶpappÞ6�192esmðŶpappÞ4þ1024e2
s ðm

2þx2
ypÞðŶpappÞ2 ¼ 1024e2

s V̂
2

p (28)

and Eq. (19) for the steady-state in-plane response in mode zp (for Vp=0), becomes

9ðẐpappÞ6�192esðm�kpÞðẐpappÞ4þ1024e2
s ðm�kpÞ

2
þx2

zp

	 

ðẐpappÞ2

¼ 1024e2
s Ŵp�

Gcosy
esp2p2ð1þl2=12Þ

ð1þð�1Þpþ1
ÞÛ

( )2

:
(29)

It is interesting to note that Eq. (28) is not a function of G or y. Hence the only fundamental cable parameters that affect
the direct out-of-plane response are es and xyp. Eq. (29) is a function of G and y through kp as well as the term in Û,
although for even p both these terms vanish and the equations for modes yp and zp are virtually identical.

The stability boundary for nonlinear modal coupling from mode zp to yp, Eq. (27), in non-dimensional form becomes

3ðẐpappÞ4�128esmðẐpappÞ2þ1024e2
s ðm

2þx2
ypÞ ¼ 0: (30)

This is not explicitly a function of G or y , although if p is odd Ẑpa is affected by these parameters as described above.
Solving Eq. (30) for Ẑ

2

pa, the yp stability boundary occurs when

Ẑ
2

pa ¼
32esm
3p2p2

27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3

xyp

m

� �2
s8<

:
9=
;: (31)

This gives real solutions for m4xypO3. Below this frequency of excitation, mode yp is always stable about the zero
amplitude solution. Above this frequency, there are two stability boundaries. Mode yp is unstable between these
boundaries but stable for lower or higher amplitude motion in mode zp (assuming no response in any other mode).

Substituting Ẑ
2

pa from Eq. (31) into Eq. (29) gives the stability boundary in terms of the excitation frequency (m) and
amplitude (in braces on the right hand side of Eq. (29), where Ŵp and Û have a fixed relationship—see Section 2.8).

The stability boundary for parametric excitation of mode yq, Eq. (25), in non-dimensional form becomes

ðẐpappÞ4�32esmðẐpappÞ2þ256e2
s ðm

2þx2
yqÞ ¼

16

ð1þl2=12Þ2
Û

2
: (32)

This applies for even p, for which mode yq exists with half the natural frequency of mode zp.
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Eq. (32) is a function of es, but it is only a weak function of G and y through l2 in the denominator of the right hand side.
For taut cables, for which the original differential equations (Eqs. (2 and 3)) are valid, l2/12)1.

For parametric excitation of mode zq, there is an identical stability boundary except xyq is replaced by xzq and m by
(m�kq). Thus, for odd q, G and y detune the stability boundary of mode zq in comparison with mode yq.

Solving Eq. (29) simultaneously with Eq. (32) (or the equivalent stability boundary for mode zq) gives the stability
boundary for parametric excitation in terms of the excitation frequency and amplitude. In this case the term in Û in
Eq. (29) is zero since p is even.

2.8. Excitation

A common use of inclined cables is in structures such as cable-stayed bridges and guyed masts. The cable end motions
are then predominantly vertical at the lower anchorage and/or horizontal at the upper anchorage, so only these
components are considered hereafter. A horizontal out-of-plane end motion does not include a component axial to the
cable, so it cannot induce parametric excitation. Therefore, at the upper anchorage, only horizontal motion in the plane of
the cable is considered. The end conditions used here are therefore

ua ¼ da cosy, va ¼ 0, wa ¼�da siny,

ub ¼ db siny, vb ¼ 0, wb ¼ db cosy, (33)

where da is the horizontal in-plane displacement of the top anchorage and db the vertical displacement of the lower
anchorage.

As stated in Section 2.1, it is assumed here that the rest of the structure to which the cable is attached is not affected by
the dynamics of the cable. On cable-stayed structures, strictly there are dynamic interactions of the cable with the rest of
the structure [14,19–23,33,34]. However, considering the global behaviour of the structure, since the mass of the other
components (e.g. bridge deck and tower) are often much greater than the mass of the cables, the local cable vibrations are
often ignored, which gives a reasonable representation of the global dynamics (see e.g. [35]). On this basis, neglecting any
influence of the cable vibrations on the global structural vibrations, near resonance of a global mode of the structure the
displacements of the cable ends are here taken as sinusoidal motions directly coupled to each other through the global
mode shape, with the ratio f (Fig. 2).

Hence the non-dimensional input amplitudes are given by

Û ¼ D̂ðsiny�fcosyÞ,

V̂n ¼ 0,

Ŵn ¼ D̂ðð�1Þnþ1cosy�fsinyÞ, (34)

where D̂¼D=L is the non-dimensional amplitude of vertical motion at the lower anchorage.

2.9. Typical results and significance of turning points

Fig. 3 shows a three-dimensional ‘waterfall’ plot of the steady-state direct response in mode z2 (assuming no response
in any other modes) from Eq. (29), for vertical excitation of the lower anchorage (and no motion of the upper anchorage) at
a series of excitation frequencies close to its natural frequency. The parameters used are as for the experimental model in
Bridge deck

Tower

b
θ

Cable chord

da = φ db

db

a

Fig. 2. Indicative dynamic displacements of a cable-stayed bridge in a global structural mode. Elevation view showing bridge deck, tower and one cable

(other cables omitted for clarity). Dashed lines: static shape. Solid lines: dynamic shape.
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Fig. 3. Three-dimensional ‘waterfall’ plot of steady-state response amplitudes in second in-plane mode. Dotted lines show the loci of the turning points

demarking the fold.

Table 1
Experimental cable parameters.

Basic cable data
Length, L 5.40 m

Inclination angle, y 22.61

Total mass per unit lengtha, rA 0.231 kgm�1

Diameter 0.79 mm

Young’s modulus, E 214�109 Nm�2

Static tension along chord, ssA 286 N

Non-dimensional parameters
es=ss/E 2.73�10�3

G=rgL/ss 0.0429

Irvine’s parameter, l2=G2 cos2 y/es 0.57

Measured damping ratiob 0.02%

a Including added masses.
b Found to be similar in all modes.
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Section 3 and Table 1. It is clear that for excitation frequencies below the natural frequency (mo0) the response amplitude
increases monotonically with the input amplitude, but for excitation frequencies above the natural frequency there is a
fold in the response amplitude. In general, from Eq. (29), the turning points (loci shown by dotted lines in Fig. 3) occur at

Ẑ
2

pa ¼
32esðm�kpÞ

9p2p2
27

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3

xzp

m�kp

� �2
s8<

:
9=
;: (35)

Real solutions only exist for m�kp4xzpO3, hence the fold only exists for excitation frequencies that satisfy this
criterion.

The direct response amplitudes of mode z2 are re-plotted for four representative excitation detuning values (m) in Fig. 4,
which also shows the stability boundaries of modes z1, y1 and y2, from Eqs. (30) and (32) (and the equivalent for mode z1).
Following the curve from the origin, each of these modes is initially stable and its stability changes passing each marked
point. (Strictly, when any one of these modes is unstable the calculated Z2a response and any other instability points are
not valid, since they were based on the assumption of a non-zero response only in the directly excited mode.)
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Fig. 4. Steady-state response amplitudes in second in-plane mode, showing stability boundaries of other modes. Following the curve from the origin,

each mode is initially stable and the stability changes passing each point. (a) m=�0.010, (b) m=0.001, (c) m=0.015, (d) m=0.030.
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The importance of the turning points can be seen in Fig. 4(c). The y1 and y2 instability points exist at very low values of
D/L, but on the upper branch of the z2 response. Starting from the origin, for increasing excitation amplitudes the solution
will follow the lower branch. Instability of mode y1 or y2 does not occur until the solution jumps onto the upper branch at
the lower (in terms of Ẑpa) turning point. Hence, for practical initial conditions, this turning point, rather than the
theoretical stability boundary, determines the minimum excitation amplitude for the instability to occur.

The excitation amplitude at the turning point can be found, in relation to the excitation frequency, by substituting
Eq. (35) (using the negative square root) back into Eq. (29).
3. Laboratory experiments

A series of laboratory experiments were conducted on an inclined cable to validate the analysis. The cable was made
from piano wire and was 5.40 m long (Fig. 5), with suitable static tension applied and lumped masses added so that the
non-dimensional cable parameters matched typical values for a 200 m long bridge cable. The cable parameters are given in
Table 1 and its theoretical and experimental natural frequencies in Table 2. The cable model was similar to a previous
1.98 m long model used [25], except for its larger scale and the use of a hydraulic actuator for excitation of the lower
anchorage, enabling better control of the input motion, especially for higher frequencies and lower amplitudes. Inputs up
to at least 15 Hz (44 times the cable fundamental natural frequency) and down to approximately 0.1 mm amplitude
(2�10�5L) could be accurately controlled.

The upper anchorage was fixed and the lower anchorage was constrained to move only vertically by a simply supported
beam, which also carried the horizontal component of the cable tension. The vertical displacement of the anchorage was
measured by a linear variable differential transformer (LVDT), which was also used for feedback control of the hydraulic
actuator. The tension in the cable was measured at both ends with load cells, while the motion of the central and lower
quarter points of the cable were tracked in both planes with a video displacement measurement system [36].
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Fig. 5. Photograph of experimental rig.

Table 2
Cable natural frequencies.

Mode no. (n) Out-of-plane (yn) In-plane (zn)

Theoretical (Hz) Measured (Hz) Error (%) Theoretical (Hz) Measured (Hz) Error (%)

1 3.255 3.254 �0.03 3.331 3.330 �0.03

2 6.509 6.494 �0.23 6.509 6.496 �0.20

3 9.764 9.726 �0.39 9.767 9.725 �0.43

4 13.019 12.907 �0.86 13.019 12.897 �0.94
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Sinusoidal input motions were applied at a series of frequencies close to the first four natural frequencies of the cable.
Before each test any cable vibrations were manually stopped then allowed to decay away further so the initial conditions
were as close as possible to at rest. The input amplitude was ramped up over 20 s to minimise transient effects. At each
frequency, a series of tests was carried out with amplitude increments of 0.2 mm (3.7�10�5L) until an instability of any
mode other than the directly excited mode occurred. Tests typically ran for 330 s each (over 1000 times the fundamental
vibration period) to give sufficient time for instabilities to develop and often for the steady-state response to be reached. In
the following figures the experimental points show the minimum input amplitude for which an instability was found. An
input with an amplitude 0.2 mm (3.7�10�5L) lower did not cause the instability to occur within the test period. The
steady-state amplitudes of the directly excited mode are also presented for these tests just below the stability boundaries.
4. Theoretical and experimental stability boundaries

The stability boundaries are considered, both theoretically and experimentally, for excitation around each of the first
four natural frequencies of the cable. These instances exhibit all the characteristics of the modal instabilities that occur in
the general case. The behaviour for excitation around the third and fourth natural frequencies is typical for inputs close to
higher odd and even natural frequencies respectively. Excitation around the first and second natural frequencies exhibit
different features due to the significant detuning of the first in-plane mode (z1) relative to the commensurate series of the
other modes, because of the cable sag.
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Only the steady-state response of the directly excited mode and the first loss of stability of any other modes are
considered, since the theory presented does not describe the behaviour thereafter. However, this defines the boundaries
above which more damaging vibrations could occur.

The theoretical results use the parameter values for the cable in Table 1. The measured natural frequencies of the first
mode in each plane matched extremely well with the theoretical values (Table 2). For higher modes the differences
increased slightly, up to 1%, believed to be due to the use of the added lumped masses on the physical model (Section 3).
The measured damping ratio of 0.02% (found to be similar in all modes) was used in the calculations. This is a very low
damping ratio, but comparable values have been found on site for the structural damping of cable-stayed bridge cables
with no added dampers [37]. Since the damping is so low, steady-state amplitudes in the directly excited mode are
generally governed by nonlinearity rather than damping.

4.1. Excitation around third natural frequency

Excitation around the third natural frequency (p=3) is the simplest case so is considered first. From Eq. (4), for the
experimental cable parameters the theoretical detuning of the in and out-of-plane natural frequencies, k3, is only 2.9�10�4,
while the measured detuning is �1.0�10�4. Hence the modes are almost perfectly tuned with each other. Mode z3 is excited
directly and since p is odd, there is no parametric excitation. The only potential instability is therefore of mode y3, due to
nonlinear modal coupling. The stability boundary is plotted in Fig. 6(a), the unstable region being in the upper right sector.
However, the lower stability boundary (close to the horizontal axis), is on the upper branch of the z3 solution. Hence with small
initial conditions, in practice mode y3 becomes unstable at the lower turning point of z3, as described in Section 2.9. The locus of
the turning point is also plotted in Fig. 6(a), which matches very well with the experimentally identified instability points of
mode y3. (In Fig. 6 onwards, lines indicate theoretical results whereas discrete symbols show experimental results. The turning
point plotted is the lower one (in terms of Ẑpa). The upper turning point is of no practical significance so is not plotted.)

The instability only occurs above the natural frequency due to the stiffening behaviour of the cable. The amplitude of
the directly excited mode is larger for positive detuning than for negative, so it is able to reach the critical amplitude for the
out-of-plane mode to become unstable. Similarly the fold only occurs for positive detuning due to the stiffening behaviour.

The steady-state amplitudes of mode z3 for excitation just below the turning point (and just below the theoretical
instability boundary) are shown in Fig. 6(b). The experimental results show reasonable agreement with the theory.
A slightly higher input amplitude causes a jump in the z3 response amplitude onto the higher branch, which is then in the
instability region for mode y3. It is believed likely that the experimental points are below the locus of the theoretical
turning point in Fig. 6(b) since the points plotted are the maximum steady-state amplitudes measured below the turning
point, where the gradient of the z3 amplitude, Z3a, with respect to the input amplitude, D, is high (c.f. Fig. 4(c) and (d)).
Hence for D just below the turning point, Z3a could be significantly below it.

Excitation around higher odd natural frequencies should exhibit virtually the same behaviour as for p=3, since parametric
excitation does not occur and the natural frequencies of the modes in the two planes are almost precisely tuned to each other.

4.2. Excitation around fourth natural frequency

For excitation around the fourth natural frequency (p=4), the same features occur as for p=3, although there is
theoretically perfect tuning between modes y4 and z4. In addition, parametric excitation of the second in or out-of-plane
Fig. 6. Stability boundary and turning point for excitation around third natural frequency (p=3). (a) Excitation frequency and amplitude on stability

boundary and at turning point. (b) Steady-state amplitude of mode z3. Legend applies to Figs. 6–8 and 10.
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modes could occur. Since k2=0 and the damping of the two second modes is taken to be the same, the stability boundaries
of these two modes, due to parametric excitation, are theoretically identical. They are plotted in Fig. 7(a), along with the
stability boundary for mode y4 and the locus of the turning point of mode z4 (directly excited).

Similarly to the case for nonlinear modal coupling, the instability region for parametric excitation is in the top right
sector and the lower boundary is on the upper branch of the solution for the directly excited mode. Therefore the input
amplitudes at which the instabilities occur in practice is given by the locus of the turning point of the directly excited
mode. Theoretically, the z4 response then jumps to an amplitude at which modes y2, z2 and y4 are all unstable.
Experimentally it was found that mode y4 normally grew first and that the input amplitude at which this occurred agreed
very well with the theoretical turning point.

The steady-state amplitudes of mode z4 just below the turning point (and just below the theoretical instability
boundaries) are plotted in Fig. 7(b). The experimental points follow a similar trend to the locus of the theoretical turning
point. As for excitation with p=3 (Fig. 6), the measured steady-state amplitudes in Fig. 7(b) are below the theoretical curve,
whereas the input amplitudes in Fig. 7(a) are generally above the curve with smaller errors.

Excitation around higher even natural frequencies should exhibit virtually the same behaviour as for p=4, since
parametric excitation can occur and the theoretical natural frequencies of the four relevant modes have the same ratios.
4.3. Excitation around second natural frequency

For excitation around the second natural frequency (p=2) the situation is complicated further. Similarly to before, mode
z2 is excited directly, and mode y2, theoretically with the same natural frequency, can become unstable due to nonlinear
modal coupling. Modes y1 and z1 can be excited parametrically, but the natural frequency of z1 is significantly detuned
from y1 (and half the natural frequency of y2 and z2) by the cable sag.

Fig. 8 shows the stability boundaries and the locus of the z2 turning point. The stability boundaries for modes y1 and y2

are equivalent to those for modes y2 and y4 for excitation with p=4 (Fig. 7). In the excitation frequency range
2.006o1�2.040o1 in practice the amplitude required for instability is governed by the turning point, above which both
modes are unstable. Experimentally mode y2 was found to grow first, for inputs in very good agreement with the locus of
the theoretical turning point.

For input frequencies below 2o1 (theoretically 2.00069o1—see Section 2.7) mode y2 is always stable, and below the
same frequency (since k2=0) there is no turning point in the z2 response (see Section 2.9). Hence below this frequency, the
relevant modal instability is parametric excitation of mode y1. This instability was found experimentally, in very good
agreement with the theoretical stability boundary.

The stability boundary for parametric excitation of mode z1 has a minimum at 2.047o1, i.e. two times its natural
frequency (k1=0.0236). Above an excitation frequency of 2.040o1 the boundary exists on the lower branch of the z2

response. Therefore it is on the theoretical stability boundary itself, rather than at the turning point (which occurs at larger
input amplitudes), at which the instability occurs in practice. This was confirmed experimentally, again in very good
agreement with the theory, as seen in Fig. 8(a). Strictly there are two other solutions for the z1 stability boundary but they
occur on the unstable and upper branches of the z2 solution, and they are not of practical relevance, so they are omitted
from Fig. 8(a) for clarity.
Fig. 7. Stability boundaries and turning point for excitation around fourth natural frequency (p=4). (a) Excitation frequency and amplitude on stability

boundaries and at turning point. (b) Steady-state amplitude of mode z4. Legend as for Fig. 6 (yp/2 and zp/2 theoretical stability boundaries are

superimposed and appear as a chain dotted line).
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Fig. 8. Stability boundaries and turning point for excitation around second natural frequency (p=2). (a) Excitation frequency and amplitude on stability

boundaries and at turning point. (b) Steady-state amplitude of mode z2. Legend as for Fig. 6.

Fig. 9. Comparison between stability boundaries for parametric excitation from Lilien and Pinto da Costa [5] and current analysis (around second natural

frequency, p=2).
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The steady-state amplitudes of mode z2 for excitation just below the stability boundaries and the turning point are
shown in Fig. 8(b). The experimental results show reasonable agreement with the theory for the boundaries for all three
types of instability.

The stability boundaries for parametric excitation are compared between the current analysis and those from Lilien and
Pinto da Costa [5] (Eq. (1)) in Fig. 9. The difference is that the current analysis includes the effect of the directly excited
mode, whereas Lilien and Pinto da Costa considered the parametrically excited mode alone. There is a marked difference
for the mode y1 stability boundary, which is experimentally confirmed to be accurate in the current analysis in Fig. 8(a).
Relative to the solution from Lilien and Pinto da Costa, for the actual stability boundary the necessary input amplitude is
generally increased for excitation frequencies below the natural frequency and decreased above it. This can be explained
by the fact that the directly excited response increases the mean tension, hence it effectively increases the natural
frequency, moving the stability boundary to the right. The magnitude of this shift is dependent on the response amplitude,
giving rise to the new stability boundary shown. The minimum input amplitude for parametric excitation is not affected
significantly, since the directly excited response is then small and the boundary is then governed by the damping ratio
rather than the cable nonlinearity. But it is noteworthy that for excitation frequencies above the natural frequency the
cable is considerably more susceptible to parametric excitation of mode y1 than previously thought.

For parametric excitation of mode z1, the difference between the actual stability boundary and that given by Lilien and
Pinto da Costa [5] (substituting oz1 for o1 in Eq. (1)) is less pronounced than for mode y1 (Fig. 9). This is because of the
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Fig. 10. Stability boundary and turning points for excitation around first natural frequency (p=1). (a) Excitation frequency and amplitude on stability

boundary and at turning points. (b) Steady-state amplitude of mode z1. Legend as for Fig. 6.
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detuning of mode z1 from the commensurate series of the others. Hence in the frequency range for parametric excitation of
mode z1, the directly excited mode (z2) is excited further from its natural frequency than the equivalent mode in the y

plane, so its response amplitude is smaller, so it has less effect on the behaviour of mode z1. However, for taut or steeply
inclined cables, the detuning of mode z1 from the others is smaller, so it is more affected by the response in mode z2. In any
case the parametric excitation of all other modes is greatly affected by the directly excited mode, so the standard analysis
[5,8], based on a single mode analysis, is inadequate.
4.4. Excitation around first natural frequency

Finally, excitation around the first natural frequency (p=1) is considered. Similarly to p=3 (Section 4.1), parametric
excitation does not occur and the only potential instability is through modal coupling with the equivalent out-of-plane
mode (y1). However, since mode z1 is significantly detuned from y1 (k1=0.0236), much larger input amplitudes are
required for z1 to reach the critical amplitude for y1 to go unstable (still defined by Eq. (31)). For the same reason, the
turning point of mode z1 occurs for higher detuning of the excitation frequency from o1.

Fig. 10(a) shows the locus of the turning point for mode z1 which exists above an excitation frequency of 1.024o1 (see
Section 2.9). It is very well matched by the experimental data. In addition, in these tests the steady-state amplitude of
mode z1 just below the turning point matched the theoretical values very well, as shown in Fig. 10(b).

The theoretical stability boundary for mode y1 is also shown in Fig. 10, but it demarks an extremely narrow instability
tongue at an excitation frequency of 1.00o1. In one test, at an excitation frequency of 1.002o1, instability of mode y1

occurred. The input amplitude was somewhat below the minimum of the theoretical stability curve, but it is sensitive to
the damping ratio, which by its nature contains some uncertainty (other stability boundaries are governed more by the
nonlinearities than the damping ratio, so they would be less sensitive to such an error).

No instability boundary or turning point was found for excitation at frequencies below o1. However, while searching
for the y1 instability boundary in experiments for excitation frequencies just above o1, unexpected large responses of
mode z2 at twice the excitation frequency (i.e. near its natural frequency) were found. Other super-harmonic responses of
cables have previously been considered [20,21,38,39], but the explanation of the observed behaviour required a refinement
of the current analysis, described in the following section.
5. Response at twice excitation frequency

It was previously assumed that it was adequate to consider the response in each mode only to occur close to its natural
frequency (Eq. (9)). However, a better representation of the response is given by including a non-resonant component of
response at the excitation frequency. Hence zn is expressed as

zn ¼ znc cosðontÞþzns sinðontÞþznp cosðoptÞ: (36)

(Note opt=Ot.) It can easily be shown that the sine component of the non-resonant response is negligible. For
excitation close to resonance (n=p), zpp=0, since the response is already covered by the znc and zns terms.
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The parametric excitation term in Eq. (3), 2Zn(ub�ua)zn, then leads to an additional term on the right hand side of Eq.
(15) equal to

�
e
on

dn,2p
Zn

2m
Uznpa: (37)

Hence the directly excited non-resonant component of mode n=2p, z2ppa, leads to excitation of the resonant component of
the same mode. Strictly other nonlinear terms also arise. However, for low amplitude response of mode 2p the additional
nonlinear terms are small relative to the existing nonlinear terms involving the directly excited resonant response of
mode zp.

It should be noted that the additional term (37) is an excitation term, present even at very low amplitudes and it cannot
be fitted into the form of Eq. (20). Hence the resonant response of mode z2p is not a matter of stability but of magnitude.

Assuming the non-resonant response of any mode to be linear, since it is small, its steady-state amplitude is given by

znpa ¼
ðznWn�anUÞ

m

O2

o2
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2

�
ðznWn�anUÞ

m

p2

n2�p2
:

(38)

The amplitude of the non-resonant response of mode z2p is then

z2ppa ¼
z2pW2p

3m

¼
W2p

3pp :
(39)

Ignoring the additional nonlinear terms mentioned above and assuming that the response of mode zp is unaffected by
the response of mode z2p (reasonable if it is small), the steady-state resonant response of mode z2p is given by
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(40)

This is similar to the equation for the steady-state amplitude of mode zp (Eq. (29)), except for the different excitation
term (squared) on the right hand side of the equation, k2p=0, since 2p is even, and there are correction terms to the
detuning, m, to account for the directly excited response in mode zp.

For in-plane excitation of the form described in Section 2.8, considering the input amplitudes, Eqs. (34), the excitation
term of mode z2p is proportional to D̂

2
. It arises from the combination of the transverse component of the support motion,

W2p, exciting a non-resonant response of the mode and the axial component of the support motion, U, causing a tension
variation oscillating in phase with the non-resonant modal response. This combination provides the quadratic forcing term
which drives the resonant response in mode z2p, at twice the excitation frequency. In common with the effect of the
directly excited mode zp modifying the parametric excitation of mode yq or zq (where q=p/2), this phenomenon is due to
the support motion having components both axial and transverse to the cable. Although combined parametric and external
excitation has been studied theoretically [10,11,40–42] and it is inherent in other treatments of the inclined cable system
considered here [7,12,13,15–18,39], this particular excitation mechanism has not previously been identified. This new
mechanism is not dependent on modal interactions – it still occurs in a single-degree-of-freedom model (for mode z2p) –
although it is modified by the directly excited response in mode zp, according to the terms in square brackets in Eq. (40).

Similarly to the steady-state response of mode zp, there can be a fold in the resonant response of mode z2p. The turning
points are given by an expression similar to Eq. (35). However, it is a function of the amplitude of the response in mode zp,
which is itself a nonlinear function of the input amplitude. It is therefore not possible to derive an explicit equation relating
the support amplitude and frequency at the turning points. The position of the fold has therefore been calculated
numerically. It is the jump in the z2p resonant response from its lower turning point that was found experimentally in the
tests with p=1 (Section 4.4). Fig. 10 shows the theoretical and experimental turning points, which are in very good
agreement.

The assumptions above are only valid for small amplitude response of mode z2p. They therefore give a reasonable
estimate of the behaviour before the jump and the input amplitude at which the jump occurs. However, the analysis is
unlikely to be accurate thereafter, since the nonlinear terms involving mode z2p are no longer negligible. In Fig. 10, the y1

stability boundary is then likely to be modified by the z2 response.
To indicate the importance of the response at twice the excitation frequency for input frequencies just above o1, the

various components of the cable response are shown in Fig. 11 for an excitation frequency of 1.008 o1 (p=1).
The theoretical directly excited response amplitude in mode z1 (Ẑpa from Eq. 29) is shown as a solid line. For low excitation
amplitudes it is much larger than both the non-resonant and resonant components of response of mode z2 (z2ppa/L from
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Fig. 11. Steady-state response amplitudes of different components of cable motion for excitation frequency 1.008o1 (p=1). Black symbols: experimental

amplitudes before jump in z2p response. Grey symbols: experimental amplitudes after jump in z2p response.

J.H.G. Macdonald et al. / Journal of Sound and Vibration 329 (2010) 4515–4533 4531
Eq. (39) and Ẑ2pa from Eq. (40), respectively). For increasing excitation amplitude the non-resonant response of mode z2

remains small, increasing linearly as assumed. However, the resonant response of mode z2, at twice the excitation
frequency, increases much more rapidly, since it is driven by the excitation amplitude squared. For an excitation amplitude
of D̂¼ 1� 10�3 it has theoretically reached a response amplitude of 23% of the directly excited response of mode z1. From
filtering of the measured responses at the cable mid and lower quarter points, Fig. 11 shows the experimental amplitudes
of the different response components at two excitation amplitudes just below 1�10�3. There is very good agreement with
the theory for the amplitude of all three response components, giving confidence in the analysis. For a very small
increment in the excitation amplitude, experimentally there was then a jump in the resonant response amplitude of mode
z2 of more than a factor of three. Although there was a slight discrepancy with the theoretical excitation amplitude for the
jump (but note from Fig. 10 it is very sensitive to the detuning of the excitation and natural frequencies), the behaviour
was otherwise as expected. The experimental points above the jump are shown in Fig. 11 in grey, indicating that good
agreement with the theory is no longer expected since the assumption of small response in mode z2 is no longer valid. The
experimental resonant response of mode z2 is, in this case, nevertheless still very close to the theoretical response,
although the other components of response show larger discrepancies. The resonant response of mode z2 is very similar in
amplitude to the directly excited response in mode z1, showing the importance of the response at twice the excitation
frequency in these circumstances. The behaviour at other excitation frequencies in this vicinity is very similar.

After the jump, experimentally mode y2 was found to be unstable. This is believed to be due to nonlinear coupling with
mode z2, similar to the coupling from mode zp to yp (Section 2.6). However, the behaviour would be modified by the
response in both modes z1 and z2, the analysis of which is beyond the scope of this paper.

For taut cables the response of mode z2p is only significant for p=1. For larger p, the response of mode z2p is smaller and
the stability boundaries for the other modes are lower than its theoretical turning point. It is important for p=1 since the
directly exited response in mode z1 is detuned from m=0, so other effects are more significant.
6. Conclusions

Generalised stability boundaries of modal vibrations have been presented for a cable subjected to harmonic support
excitation near any natural frequency. The underlying cable model allows for cable inclination, small sag, cubic and
quadratic geometric nonlinearities (from cable stretching and its interaction with the static sag respectively), multiple
modes in both planes (with nonlinear coupling between them) and motion of cable ends in any direction. The results
concentrate on the case of in-plane excitation – vertical at the lower anchorage or equivalently horizontal at the upper
anchorage – which is the most significant condition for cables on cable-stayed bridges and guyed masts.

For inputs with components both normal to and along the cable, single mode analysis is not adequate. The response in
the directly excited mode, mainly from the normal component, affects the stability boundaries of the other modes. In
particular, for excitation above the natural frequency, the cable is unstable for lower amplitude inputs than previously
believed.

Modal instabilities can occur from two mechanisms: (a) nonlinear modal coupling between modes in the two planes
with the same natural frequencies, governed by the amplitude of the directly excited mode, or (b) parametric excitation, at
half the excitation frequency, in either plane, due to the axial component of the end motion. Often in practice modal
instability occurs when the directly excited response passes a turning point rather than on the theoretical stability
boundary itself, which often occurs on the upper branch of the directly excited response.
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Although the cable model initially includes all modes, normally the only important modes are the two at the excitation
frequency and, for direct excitation of even modes, the two at half the excitation frequency.

Theoretical and experimental stability boundaries have been presented for a cable with typical non-dimensional
parameter values for excitation around the first four natural frequencies. Excitation around the third and fourth natural
frequencies gives behaviour typical of higher modes, with virtually perfect tuning between the modes. Excitation around
the first and second natural frequencies are special cases due to the detuning of the first in-plane mode, caused by the cable
sag.

For excitation around the first natural frequency, in addition, significant response of the second in-plane mode can
occur, at two times the excitation frequency. This is another consequence of the combination of components of the
excitation along and normal to the cable, providing combined parametric and external excitation. This is the first time this
particular mechanism has been identified.

In all cases there is good agreement between the theoretical and experimental responses, validating the underlying
equations of motion from Warnitchai et al. [26] for this application with taut inclined cables, and giving confidence in the
theoretical expressions derived here. These expressions define the conditions under which instabilities or jumps in modal
responses occur, which could lead to damaging large amplitude vibrations.
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[27] M.J. Ernst, Der E-Modul von Seilen unter Berücksichtigung des Derchhanges (The E-modulus of cables taking into account their sag), Der
Bauingenieur 40 (2) (1965) 52–55 in German.

[28] T. Bakri, R. Nabergoj, A. Tonel, F. Verhulst, Parametric excitation in non-linear dynamics, International Journal of Non-linear Mechanics 39 (2004)
311–329.

[29] D.J. Wagg, S.A. Neild, in: Nonlinear Vibration with Control, Springer, 2010.
[30] F. Verhulst, in: Nonlinear Differential Equations and Dynamical Systems, Springer, 1996.
[31] A. Tondl, T. Ruijgrok, F. Verhulst, R. Nabergoj, in: Autoparametric Resonance in Mechanical Systems, Cambridge University Press, 2000.
[32] A.H. Nayfeh, D.T Mook, in: Nonlinear Oscillations, Wiley, 1979.
[33] V. Gattulli, M. Lepidi, Localization and veering in the dynamics of cable-stayed bridges, Computers and Structures 85 (21-22) (2007) 1661–1668.
[34] E. Caetano, A. Cunha, V. Gattulli, M. Lepidi, Cable-deck dynamic interactions at the International Guadiana Bridge: on-site measurements and finite

element modelling, Structural Control and Health Monitoring 15 (2008) 237–264.
[35] W.E. Daniell, J.H.G. Macdonald, Improved finite element modelling of a cable-stayed bridge through systematic manual tuning, Engineering Structures

29 (3) (2007) 358–371.
[36] J.H.G. Macdonald, C.A. Taylor, B.T. Thomas, E.L. Dagless, Real time remote monitoring of dynamic displacements by computer vision, Proceedings of

the Sixth Society for Earthquake and Civil Engineering Dynamics Conference, Oxford, 1998, pp. 389–396.
[37] J.H.G. Macdonald, Separation of the contributions of aerodynamic and structural damping in vibrations of inclined cables, Journal of Wind Engineering

and Industrial Aerodynamics 90 (1) (2002) 19–39.
[38] F. Benedettini, G. Rega, Planar nonlinear oscillations of elastic cables under superharmonic resonance conditions, Journal of Sound and Vibration 132

(1989) 353–366.
[39] S.R.K. Nielsen, P.H. Kirkegaard, Super and combinatorial harmonic response of flexible elastic cables with small sag, Journal of Sound and Vibration

251 (1) (2002) 79–102.
[40] C.S. Hsu, W.H. Cheng, Steady-state response of a dynamical system under combined parametric and forcing excitations, ASME Transactions: Journal of

Applied Mechanics 41 (2) (1974) 371–378.
[41] H. Troger, C.S. Hsu, Response of a nonlinear-system under combined parametric and forcing excitation, ASME Transactions: Journal of Applied

Mechanics 44 (1) (1977) 179–181.
[42] N. HaQuang, D.T. Mook, R.H. Plaut, Non-linear structural vibrations under combined parametric and external excitations, Journal of Sound and

Vibration 118 (2) (1987) 291–306.


	Generalised modal stability of inclined cables subjected to support excitations
	Introduction
	Derivation of theoretical stability boundaries
	Equations of motion
	Scaling and averaging
	Direct excitation
	Modal stability
	Parametric excitation
	Nonlinear modal coupling between modes in orthogonal planes
	Non-dimensional response and stability boundaries
	Excitation
	Typical results and significance of turning points

	Laboratory experiments
	Theoretical and experimental stability boundaries
	Excitation around third natural frequency
	Excitation around fourth natural frequency
	Excitation around second natural frequency
	Excitation around first natural frequency

	Response at twice excitation frequency
	Conclusions
	Acknowledgments
	References




